Showing posts with label វិសមភាព. Show all posts
Showing posts with label វិសមភាព. Show all posts

Tuesday, October 7, 2014

46th Canada MO: Problem Number 1

ប្រធានលំហាត់៖
គេឲ្យ $ a_1,\ a_2,\ ...,\ a_n$ ជាបណ្តាចំនួនពិតវិជ្ជមាន ដែលមានផលគុណស្មើ 1។ 
បង្ហាញថាផលបូកៈ
\[\dfrac{a_1}{1+a_1}+\dfrac{a_2}{(1+a_1)(1+a_2)}+\dfrac{a_3}{(1+a_1)(1+a_2)(1+a_3)}+...+\dfrac{a_n}{(1+a_1)(1+a_2)...(1+a_n)}\]
គឺធំជាង រឺ ស្មើនឹង $\dfrac{2^n-1}{2^n}$ ។
ដំណោះស្រាយ
$​​​\dfrac{a_m}{(1+a_1)(1+a_2)...(1+a_m)}$
$=\dfrac{1+a_m}{(1+a_1)(1+a_2)...(1+a_m)}-\dfrac{1}{(1+a_1)(1+a_2)...(1+a_m)}$
$=\dfrac{1}{(1+a_1)...(1+a_{m-1})}-\dfrac{1}{(1+a_1)...(1+a_m)}$
ដូចនេះ បើយើងយក $b_j=(1+a_1)(1+a_2)...(1+a_j)$, ដែល $b_0=0$, ពេលនោះយើងបានផលបូក
\[\sum_{j=1}^{n}\dfrac{a_j}{(1+a_1)...(1+a_j)}=\sum_{j=1}^{n}(\dfrac{1}{b_j-1}-\dfrac{1}{b_j})=1-\dfrac{1}{b_n}\]
យកចិត្តទុកដាក់ថា $b_n=(1+a_1)(1+a_2)...(1+a_n)\ge(2\sqrt{a_1})(2\sqrt{a_2})...(2\sqrt{a_n})=2^n$
ដែល សមភាពកើតមានលុះត្រាតែគ្រប់ $a_i$ ស្មើនឹង $1$ ។ ដូចនេះ,
\[1-\dfrac{1}{b_n}\ge 1-\dfrac{1}{2^n}=\dfrac{2^n-1}{2^n}\]
ដើម្បីដឹងថាតម្លៃតូចបំផុតនេះ អាចកើតមានរឺទេ, គឺយើងជំនួនគ្រប់ $a_i=1$ ចូល យើងបានៈ
\[\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^n}=\dfrac{2^{n-1}+2^{n-2}+...+1}{2^n}=\dfrac{2^n-1}{2^n}\]
បញ្ហាត្រូវបានស្រាយបញ្ជាក់។




Monday, May 26, 2014

Maths Exercise #42: Inequality fro Balkan MO 2014

ប្រធានលំហាត់៖
គេឲ្យ $x,\ y$ និង $z$ ជាចំនួនពិតវិជ្ជមានបី ផ្ទៀងផ្ទាត់ $xy+yz+zx=3xyz$។
បង្ហាញថាៈ  $x^2y+y^2z+z^2x\ge 2(x+y+z)-3$ ហើយសមភាពកើតមាននៅពេលណា?

ដំណោះស្រាយ
លក្ខខណ្ឌដែលឲ្យអាចសរសេរជា $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3$
តាមនេះ, យើងបានៈ
\[ x^2y+y^2z+z^2x-2(x+y+z)+3=x^2y-2x+\frac{1}{y}+y^2z-2y+\frac{1}{z}+z^2x-2x+\frac{1}{x}\\=y\left(x-\frac{1}{y}\right)^2+z\left(y-\frac{1}{z}\right)^2+x\left(z-\frac{1}{z}\right)^2\ge 0\]
វិសមភាពកើតមានលុះត្រាតែ $xy=yz=zx=1$ រឺនៅពេល $x=y=z=1$


Friday, May 23, 2014

Maths Exercise #41: Requested translate exercise, Inequality

ប្រធានលំហាត់៖
គេតាង $a,b,c$ ជាប្រវែងជ្រុងទាំងបី ហើយ $x,y,z$ ជាប្រវែងបន្ទាត់ពុះក្នុងទាំងបីរបស់ត្រីកោណ $\Delta ABC$។
ចូរស្រាយបញ្ជាក់ថាៈ $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$

ដំណោះស្រាយ
តាង $AI=x$ ជាបន្ទាត់ពុះក្នុងរបស់ $\Delta ABC$ ,យើងបានក្រឡាផ្ទៃ$\Delta ABC$ ស្មើនឹងៈ
\[S=\dfrac{1}{2}bc\sin A=\dfrac{1}{2}xc\sin\dfrac{A}{2}+\dfrac{1}{2}xb\sin\dfrac{A}{2}\\ \Rightarrow 2bc\sin\dfrac{A}{2}\cos\dfrac{A}{2}=x(b+c)\sin\dfrac{A}{2}\\ \Rightarrow x=\dfrac{2bc\cos\dfrac{A}{2}}{b+c}<\dfrac{2bc}{b+c}\ \Rightarrow\ \dfrac{1}{x}>\dfrac{b+c}{2bc}\ \Rightarrow\ \dfrac{1}{x}>\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\quad (1)\]
ដូចគ្នាដែរ យើងបានៈ $\dfrac{1}{y}>\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{c}\right)\ \ \  (2);\quad \dfrac{1}{z}>\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ \ \ (3)$
បូកអង្គនឹងអង្គនៃវិសមភាព$(1),(2),(3)$ យើងបានៈ
\[\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\]

Thursday, May 22, 2014

Maths Exercise #40: Inequality in 2010 version ^_^

ប្រធានលំហាត់៖

ដំណោះស្រាយ
យើងមានៈ
$\frac{1}{x_1+2010}+\frac{1}{x_2+2010}+\frac{1}{x_3+2010}+\frac{1}{x_4+2010}+\frac{1}{x_5+2010}=\frac{1}{2010}\\ \Leftrightarrow \frac{1}{x_2+2010}+\frac{1}{x_3+2010}+\frac{1}{x_4+2010}+\frac{1}{x_5+2010}=\frac{1}{2010}-\frac{1}{x_1+2010}=\frac{x_1}{(x_1+2010).2010}$

អនុវត្តន៍វិសមភាពកូស៊ី, យើងបានៈ
$\frac{1}{x_2+2010}+\frac{1}{x_3+2010}+\frac{1}{x_4+2010}+\frac{1}{x_5+2010}\ge\\ 4\sqrt[4]{\frac{1}{x_2+2010}.\frac{1}{x_3+2010}.\frac{1}{x_4+2010}.\frac{1}{x_5+2010}}$

ពេលនោះ យើងបានៈ
$\frac{x_1}{(x_1+2010).2010}\ge 4.\sqrt[4]{\frac{1}{x_2+2010}.\frac{1}{x_3+2010}.\frac{1}{x_4+2010}.\frac{1}{x_5+2010}}\quad (1)$

ធ្វើដូចគ្នាដែរ យើងបានៈ
$\frac{x_2}{(x_2+2010).2010}\ge 4.\sqrt[4]{\frac{1}{x_1+2010}.\frac{1}{x_3+2010}.\frac{1}{x_4+2010}.\frac{1}{x_5+2010}}\quad (2)\\ \frac{x_3}{(x_3+2010).2010}\ge 4.\sqrt[4]{\frac{1}{x_1+2010}.\frac{1}{x_2+2010}.\frac{1}{x_4+2010}.\frac{1}{x_5+2010}}\quad (3)\\ \frac{x_4}{(x_4+2010).2010}\ge 4.\sqrt[4]{\frac{1}{x_1+2010}.\frac{1}{x_2+2010}.\frac{1}{x_3+2010}.\frac{1}{x_5+2010}}\quad (4)\\ \frac{x_5}{(x_5+2010).2010}\ge 4.\sqrt[4]{\frac{1}{x_1+2010}.\frac{1}{x_2+2010}.\frac{1}{x_3+2010}.\frac{1}{x_4+2010}}\quad (5)$

យក $(1)\times(2)\times(3)\times(4)\times(5)$ អង្គនឹងអង្គ យើងបានៈ
$\frac{x_1.x_2.x_3.x_4.x_5}{(x_1+2010)(x_2+2010)(x_3+2010)(x_4+2010)(x_5+2010).2010^5}\\ \ge4^5.\sqrt[4]{\frac{1}{(x_1+2010)^4}.\frac{1}{(x_2+2010)^4}.\frac{1}{(x_3+2010)^4}.\frac{1}{(x_4+2010)^4}.\frac{1}{(x_5+2010)^4}}\\ \Leftrightarrow x_1.x_2.x_3.x_4.x_5\ge 2010^5.4^5$

ដូចនេះ  $\sqrt[5]{x_1.x_2.x_3.x_4.x_5}\ge 8040$
សញ្ញា $"="$ កើតមានពេលៈ $x_1=x_2=x_3=x_4=x_5=8040$

មើលដំណោះស្រាយរបស់ប្អូន Punrong Rany តាមតំនភ្ជាប់ខាងក្រោម៖
https://www.facebook.com/photo.php?fbid=775472742477186&set=gm.244297135774210&type=1